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Abstract

A numerical study has been carried out in rectangular enclosures, which have a vertical active wall with all the other walls insulated. The
equally divided active sidewall is heated and cooled with sinusoidal temperature profiles. Two cases have been considered: the first is the
lower part is heated while the upper part is cooled and the second, the upper part is heated and lower part is cooled. Steady state heat transfer
by laminar natural convection has been studied by numerically solving equations of mass, momentum and energy, to determine the thermal
penetration in the enclosures and heat transfer as a function of Rayleigh number, the aspect ratio and the position of side heating with
respect to side cooling. Rayleigh number was varied from 103 to 106 and the aspect ratio from 0.2 to 5, and the results are presented in
the form of streamlines and isotherms, local and average Nusselt number, and heat penetration length. It is found that the penetration
approaches to 100% at high Rayleigh numbers when the lower part is heated while the higher part is cooled. In the case of the higher part
is heated and the lower part is cooled, the penetration is limited to 70% passing through maxima at Rayleigh number below 106.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in fluid filled rectangular enclosures
with heating from the bottom and sides has been studied
extensively. We may mention among others, discrete heat-
ing in enclosures while cooling from side walls [1–4], tran-
sient heat transfer by natural convection in a square
enclosure heated from part of the bottom wall, which
had a uniform temperature but its magnitude varied sinu-
soidally with time [5], mixed convection in a channel heated
by discrete heaters placed on the bottom while the oppos-
ing side was kept isothermal [6], with discrete heating from
the bottom while cooled from the sides [7], turbulent natu-
ral convection–conduction in a square cavity containing a
massive sidewall on which a discrete heater with constant
heat flux was placed [8]. Some studies also exist, for exam-
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ple, with heating from the side and cooling from the top [9],
or heating from below and cooling from the sides [10] as
well as with heating [11,12] with various boundary condi-
tions. This study concerns with heating and cooling from
the same vertical sidewall while the others are insulated.
The relevant studies in this case are those in [11,12], which
we will review briefly.

Poulikakos [11] studied natural convection in rectangu-
lar enclosures isothermally heated and cooled on the same
equally divided sidewall with the other walls insulated.
Because of the step change in temperature at the mid-level
between heated and cooled parts, there was a discontinuity
problem, which was removed by assuming that the temper-
ature at that point had an average temperature of heated
and cooled parts, i.e. zero for identical absolute value in
two parts. He determined heat transfer and vertical and
horizontal thermal penetration as a function of Rayleigh
number and the aspect ratio. Sarris et al. [12] studied
numerically natural convection in a rectangular enclosure
with heating from the top wall with all the others insulated.
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Nomenclature

A cavity aspect ratio, =H/L
cp heat capacity, J/kg K
g acceleration due to gravity, m/s2

H cavity height, m
k thermal conductivity, W/m K
L cavity width, m
Nu Nusselt number, Eq. (6)
p pressure, Pa

P dimensionless pressure, =(p + qgy)L2/qa2

Pr Prandtl number, =m/a
Ra Rayleigh number, =gbDTL3/(ma)
t time, s
T temperature, K
Tref reference temperature, ¼ T ðp=2Þ

2 , K
DT temperature difference, =T(p/2) � Tref, K
U, V dimensionless fluid velocities, =uL/a, vL/a
X, Y dimensionless Cartesian coordinates, =x/L, y/L
x, y Cartesian coordinates

Greek symbols

a thermal diffusivity, m2/s
b volumetric coefficient of thermal expansion, 1/K

m kinematic viscosity, m2/s
q fluid density, kg/m3

w stream function
h dimensionless temperature, =(T � Tref)/DT

s dimensionless time, at/L2

Superscript

– average

Subscripts
a air
C cold, ambient value
ext extremum
f fluid
H hot, active
loc local
max maximum
min minimum
o average

gy

x

u'=v'=0; = 0

u'=v'=0; = 0

u

u

'=v

'=v

'=0;

'=0

= 0

T(y)=Tref
+ ΔT_ sin (2πy/H)

H L

Fig. 1. Schematic of the rectangular enclosure, the coordinate system and
boundary conditions.
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Their Rayleigh number was from 102 to 108 and the aspect
ratio was from 0.5 to 2. They showed that local Nusselt
number at the heated wall was an increasing function of
Rayleigh number and circulation strength in the cavity
was an increasing function of the aspect ratio.

In this study we will analyze natural convection heat
transfer in rectangular enclosures having a sidewall heated
and cooled with sinusoidal temperature profiles and the
other walls adiabatic. Our main objective is to determine
the thermal penetration in the enclosure and heat transfer
as a function of Rayleigh number, the aspect ratio and the
position of side heating with respect to side cooling. We
see from the literature review that the case of heating with
sinusoidal temperature profile on the sidewall has not been
addressed. This case has applications and implications espe-
cially for shallow enclosures in which thermal penetration
has certain importance in industrial processes and furnaces.

2. Problem and mathematical model

2.1. Problem definition

A schematic of the two dimensional system, and the
coordinates and boundary conditions are shown in
Fig. 1. The cavity is differentially heated and cooled along
a single vertical side, with other sides insulated. Sinusoidal
temperature distributions are applied on the vertical side as

T ðyÞ ¼ T ref � DT sin 2p y
H

� �
h ¼ T�T ref

DT ¼ � sinð2pY Þ

)
ð1Þ
where positive sign is for heating from the lower half and
negative sign for heating from the upper half.

2.2. Mathematical model

Following assumptions are made: the flow is laminar of
an incompressible Newtonian fluid and two-dimensional,
there is no viscous dissipation, the gravity acts in the verti-
cal direction, fluid properties are constant and fluid density
variations are neglected except in the buoyancy term (the
Boussinesq approximation), and radiation heat exchange
is negligible.

The continuity, momentum and energy equations are
written. Using non-dimensional variables defined in the
nomenclature, the non-dimensional governing equations
are obtained as



Table 1
Comparison of results for natural convection in a differentially heated
square cavity

Ra Benchmark
[15] (60 � 60)

de Vahl Davis
[15] (60 � 60)

Wan et al.
[16] (FEM)

This study
(60 � 60)

Nuo Wmax Nuo Wmax Nuo Nuo Wmax

103 – 1.117 1.117 1.117 – 1.117 1.177
104 2.238 – 2.242a – 2.254 2.246 5.076
105 4.509 9.612 4.531 9.667 4.598 4.532 9.623
106 8.817 16.750 9.035 17.113 8.976 8.871 16.983
107 – – – – 16.656 16.845 31.018

a (40 � 40).
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oU
oX
þ oV

oY
¼ 0 ð2Þ

oU
os
þ U

oU
oX
þ V

oU
oY
¼ � oP

oX
þ Prr2U ð3Þ

oV
os
þ U

oV
oX
þ V

oV
oY
¼ � oP

oY
þ Prr2V þ Ra Prh ð4Þ

oh
os
þ U

oh
oX
þ V

oh
oY
¼ r2h ð5Þ

The steady-state solutions are obtained from unsteady-
state equations, Eqs. (2)–(5). The local, average and
normalized average Nusselt numbers are calculated respec-
tively as

Nuloc ¼ � oh
oX

Nu ¼
R A

0
Nuloc dY

Nu ¼ NuRa

NuRa¼0

9>>>=
>>>;

ð6Þ

where NuRa is the Nusselt calculated for Ra > 0 and NuRa¼0

is calculated for Ra = 0, i.e. for pure conduction, from the
second equation of Eq. (6).

The stream function is calculated from its definition as

U ¼ � ow
oY

; V ¼ ow
oX

ð7Þ

where w is zero on the solid surfaces and the streamlines are
drawn by Dw = (wmax � wmin)/n with n = number of
increments.

2.3. Boundary conditions

The boundary conditions of the system are shown in
Fig. 1. Velocities are zero on all solid surfaces, normal pres-
sure gradient are zero on all solid surfaces at the outside
boundaries. On the adiabatic boundaries, temperature gra-
dient is zero. On the left vertical boundary, a sinusoidal
temperature is applied, in the first case (case A), heated
on lower half while cooled on the upper half, and in the sec-
ond case (case B), the inverse. Thus,

On all solid boundaries : U ¼ V ¼ 0

On X ¼ 0; 0 < Y < A : h ¼ � sinð2pY Þ
On Y ¼ 0; A; 0 < X < 1 : oh

oY ¼ 0

On X ¼ 1; Y ¼ 0 to A : oh
oX ¼ 0

9>>>=
>>>;

ð8Þ
3. Numerical technique

The numerical method used to solve Eqs. (2)–(5) is the
SIMPLER (Semi-Implicit Method for Pressure Linked
Equations Revised) algorithm [13]. The computer code
based on the mathematical formulation presented above
and the SIMPLER method were validated earlier [14]
and also in this study.
Validation was carried out with respect to the bench-
mark case in a square cavity [15] as well as to those bench-
mark quality results in the literature [15,16]. It is calculated
for Ra from 103 to 107 with the mesh size of 60 � 60. Aver-
age Nusselt number Nuo and the maximum stream function
Wmax at Ra are compared in Table 1. It is seen that the
agreement is excellent: The maximum deviation in Nusselt
number obtained by the code with reference to the bench-
mark solution [15] is 0.5% for Ra = 105 and 0.6% for
Ra = 106, while that in jWmaxj is 0.11% and 1.4% respec-
tively. With respect to the solution of de Vahl Davis in
[15] and that of Wan et al. [16], they are equally in good
concordance. As a further check, the average Nusselt num-
bers at the hot and cold walls were compared, which
showed a maximum difference of about 0.5% in all runs.

The present code was tested also to simulate the case
studied by Sarris et al. [12]. We calculated local Nusselt
number for the square cavity at Ra = 105, 107 and 108

and compared with the data from their Fig. 6. For
Ra = 105 and 107, we found the same values and for
Ra = 108, the maximum deviation was 0.017% at positions
near the vertical boundaries at X = 0.05 and 0.95.

Uniform grid in X and Y direction were used for all
computations. Grid convergence was studied for the case
of A = 1 with grid sizes from 40 � 40 to 120 � 120 at
Ra = 105. Grid independence was achieved with grid size
of 80 � 80 within 0.3% in Nusselt number and 0.6% in
extremum stream function. Similar tests were done with
the cavities having A from 0.2 to 5, and found that the grid
size was satisfactory with the following grids: 81 � 21 for
A = 0.2 to 0.5, 41 � 81 for A = 2, and 21 � 81 for A = 4
to 5. Using a system with 2.0 GHz clock speed, a typical
execution time, at Ra = 105 for example, was 310 s.

A converged solution was obtained by iterating in time
until variations in the primitive variables between subse-
quent time steps were very small:

Rð/old
i;j � /i;jÞ < 10�4 ð9Þ

where / stands for U, V, and h.
Within the same time step, residual of the pressure term

was less than 10�3 [13]. In addition, the accuracy of the
solution was double-checked using the energy conservation
on the domain to ensure it was less than 10�4.
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4. Results and discussion

The rectangular cavities with aspect ratio, A = 0.2, 0.25,
0.50, 1, 2, 4 and 5 were studied at Rayleigh number from
103 to 106. Two cases were considered, one with lower half
heated, upper half cooled by a sinusoidal temperature pro-
file (designated as Case A and shown in Fig. 1) and the
other with upper half heated, lower half cooled by the same
temperature profile (designated as case B). Prandtl number
was 0.7. We will first present Case A in which the lower half
is heated and upper half is cooled as in Fig. 1.

4.1. Case A: Lower half heated

Using Eqs. (6) and (7), the flow and temperature fields
are produced, average Nusselt number is calculated, local
Nusselt numbers along the active side wall as well as at
Y = 0.5 in the X direction are calculated. First, we will
present typical flow and temperature fields, and discuss
the mechanism of heat transfer. Then we will present ther-
mal penetration in the cavity and finally the heat transfer.

4.1.1. Flow and temperature fields

They are presented at Rayleigh from 103 to 106 in Fig. 2
for a square enclosure, in Fig. 3 for tall enclosures with
aspect ratio of 2 and 5, and in Fig. 4 for shallow enclosures
with aspect ratio of 0.5 and 0.2. We can see that in all cases,
the flow and temperature fields are symmetric at Y = 0.5
plane. Indeed, some cases were computed using half of
the domain and found exactly the same results with those
presented in these figures. The mechanism of heat transfer
is by a single cell rotating in clockwise direction in the
lower half, driven by the hot wall. The heat is transfered
to the upper half along the symmetry plane at Y = 0.5, as
a result of which a counter clockwise rotating single cell
is formed. This cell is cooled at the cold wall, which also
has a sinusoidal temperature profile.

Fig. 2 shows for A = 1, flow and temperature fields for
Ra from 103 to 106 in (a) to (d) respectively. The strength
of the circulation jWextj is 0.1813 (X = 0.3000, Y = 0.2750)
at Ra = 103, it becomes 1.8718 (X = 0.3000, Y = 0.2875)
at Ra = 104, 8.5666 (X = 0.4750, Y = 0.3000) at Ra = 105,
and 27.0699 (X = 0.6500, Y = 0.2750) at Ra = 106. Thus,
as expected, it increases with Rayleigh number and the
coordinate shifts from close to the hot wall towards inside,
i.e. the flow penetrates into the cavity more and more with
increasing Rayleigh number, which is also clearly visible in
the flow field figures. As a consequence, the temperature
field also follows the same trend and the temperature gradi-
ent along the symmetry plane is increased with increasing
Rayleigh number.

For A = 2, we see in Fig. 3(a) that the appearance of the
flow field is the same at Rayleigh from 103 to 106 in (i) to
(iv) respectively, although jWextj has obviously increased
from 1.023 to 23.2894. The horizontal as well as vertical
penetration of flow seems to be the same. The isotherms
on the right show that as Rayleigh increases, the thermal
penetration becomes more vigorous with higher tempera-
ture gradient along the symmetry plane, i.e. increased heat
transfer from the lower to the upper half of the enclosure.
For A = 5 in Fig. 3(b), the streamlines show that the verti-
cal penetration is incomplete. It is about 85% at Ra =
103 and gradually increasing to about 90% at 106 in Fig.
3(b-iv). Beyond the penetration limit, although a weak cell
is visible at low Rayleigh numbers, it also disappears at
higher Rayleigh numbers and the fluid is stagnant. jWextj
for this case varies from 0.0071 at Ra = 103 to 8.1981 at
106 in (b-i) to (b-iv). The isotherms show in these regions
that the heat transfer is conduction dominated.

Flow and temperature fields in the lower half of the shal-
low enclosures are presented in Fig. 4(a) for A = 0.5 and in
Fig. 4(b) for A = 0.2. Ra is from 103 to 106 corresponding
respectively to (i) to (iv). In Fig. 4(a) at Ra = 103, the
circulation strength is weak with jWextj = 0.1859 at
X = 0.3000, Y = 0.2750. As Rayleigh increases to 104, its
location does not change much but jWextj = 1.8874 and
the penetration into the cavity is increased. Further
increase in Rayleigh results gradually in full penetration
of flow into the cavity, with jWextj from 8.2724 (X =
0.4750, Y = 0.3000) at Ra = 105 to 22.5723 (X = 1.5, Y =
0.2750) at 106. Isotherms for this case show that tempera-
ture gradient at the hot wall is an increasing function of
Rayleigh number. The temperature gradient at the symme-
try plane is very small for Ra = 103 and it gradually
increases with Rayleigh number implying that the length
of the symmetry plane participating in heat transfer to
the upper half is increased. In the case of shallower enclo-
sure with A = 0.2 in Fig. 4(b), we can see the flow and
temperature fields do not penetrate completely even at
Ra = 106, in which case jWextj = 21.2384 at (X = 1.0000,
Y = 0.3250).

We expect that the local Nusselt number with the sinu-
soidal temperature profile on the wall will have a different
variation from that of an isothermal case. Typical local
Nusselt number on the heated part of the active sidewall
is shown in Fig. 5 for A = 0.25 and 0.50. Nuloc profiles
are for Ra from 103 to 106. Nuloc is positive when heat is
transfered into the enclosure and negative when it is from
the enclosure to environment. Following the sinusoidal
variation of the wall temperature, at the lower and upper
parts of the active wall, the temperature gradient is not
favorable for heat transfer from the wall to the enclosure
air. Thus, generally, at all Rayleigh numbers, heat is trans-
fered from the enclosure to environment at these parts, par-
ticularly at the lower part, since the returning fluid is
relatively warmer than the wall temperature. This mecha-
nism becomes less important as Ra is increased, since the
convection and hence the heat transfer to the upper part
in the enclosure is increased. For low Rayleigh numbers,
at Ra < 104 the heat transfer at the upper part is from
the wall into the enclosure but as Ra increases, since the
fluid becomes much warmer than the that of the upper part
of the wall, the heat transfer becomes from the enclosure to
the environment. The same is observed for the aspect ratio
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Fig. 3. Flow (the upper figures) and temperature (the lower figures) fields for (a) A = 2: (i) Ra = 103, (ii) Ra = 104, (iii) Ra = 105 and (iv) Ra = 106;
(b) A = 5 (the scale is changed in the X direction): (i) Ra = 103, (ii) Ra = 104, (iii) Ra = 105 and (iv) Ra = 106.
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of A = 0.25 and 0.50. Although the strength of local Nus-
selt number changed with Rayleigh number and the aspect
ratio, in all the other cases, with A from 0.20 to 5, a similar
mechanism of heat transfer in and out of the enclosure was
observed. We observed also that in the upper as well as in
the lower half of the enclosure the local Nusselt profiles
were symmetric at Y = 0.5 plane, and exactly the same phe-
nomena existed in the upper half of the enclosure, where
the fluid is cooled down along the active wall with heat
transfer from the environment into the enclosure in the
upper and lower parts of the active wall.

4.1.2. Thermal penetration

For tall enclosures, it can be determined approximately
from the flow and temperature fields. The same cannot be
easily done for shallow enclosures. Following our discus-
sion regarding the mechanism of heat transfer through
the symmetry plane, there will be heat transfer between
lower and upper parts as long as there is a heat transport
by the cells in either half due to temperature gradients
along the symmetry plane at Y = 0.5. For this reason, to
determine thermal penetration length in this case, we traced
the local Nusselt number along the symmetry plane and
determined the point where local Nusselt number becomes
zero.

The case with Rayleigh at 105 and 106 is presented in
Fig. 6. We can see clearly in the upper figure for Ra = 105

that, the thermal penetration is X = 0.2648/0.2 = 1.324 or
26.48% for A = 0.2, X = 0.6648/0.5 = 1.330 or 66.50% for
A = 0.5 and X � 1, a complete penetration for A = 1. Simi-
larly for Ra = 106 in the lower figure, the thermal penetra-
tion is determined as X = 0.4594/0.2 = 2.297 or 45.94%



Fig. 5. Local Nusselt number at (X = 0, Y) along the heated wall in the
lower half of the enclosure (case A) for A = 0.25 (the upper figure) and
A = 0.50 (the lower figure) for various Rayleigh numbers.
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Fig. 6. Local Nusselt number at (X, Y = 0.5) along the symmetry plane as
a function of XA for various aspect ratios and Ra = 106.

Fig. 7. Thermal penetration in the enclosure as a function of Rayleigh
number and for various aspect ratios. Percentage thermal penetration is in
X direction for shallow enclosures and in Y direction in tall enclosures.
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for A = 0.2, X = 0.935/0.5 = 1.870 or 93.50% for A = 0.5
and X � 1, a complete penetration for A = 1. Percentage
thermal penetration for case A obtained for tall and shallow
enclosures is presented as a function of Rayleigh number in
upper part of Fig. 7. In general, the thermal penetration is an
increasing function of Rayleigh number with the exception
of the case with A = 2. In enclosures with aspect ratio from
1 to 5, it appears that an optimum thermal penetration exists
at low Rayleigh numbers and as Ra increases, the percentage
thermal penetration approaches towards 100%. For shallow
enclosures, percentage thermal penetration is an increasing
function of the aspect ratio and Rayleigh number. These
results are expected in view of the flow and temperatures
fields presented and discussed earlier.

4.1.3. Heat transfer

Normalized average Nusselt number on the hot or cold
wall is calculated from the last equation of Eq. (6) and pre-
sented in the upper figure of Fig. 8 for case A. We can
observe that heat transfer is conduction dominated at
low Rayleigh numbers up to about 104 for all cases. At
higher Rayleigh numbers, the convection becomes domi-
nant except for tall enclosures, for which convection is sup-
pressed further up to about 105, thereafter convection
becomes dominant. Generally, in convection dominated
regime, heat transfer is enhanced with increasing Rayleigh
number and decreasing aspect ratio. These results are
expected in view of the flow and temperature fields pre-
sented and discussed in Figs. 2–4.



Fig. 8. Normalized average Nusselt number as a function of Rayleigh
number with the aspect ratio as a parameter. Case A is when heated in the
lower half of the active wall and case B is when heated in the upper half.
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4.2. Case B: Upper part heated

From the computation point of view this case does not
represent any instability problems at high Rayleigh num-
bers, since the fluid is heated from the upper half of the
enclosure. However, it is more complicated than case A,
because the fluid heated on the hot wall turns at the end
of it and moves along the upper adiabatic wall, then verti-
cal adiabatic wall before transferring its heat at the symme-
try plane to the lower cell.

4.2.1. Flow and temperature fields

We will present, similarly but briefly, the flow and tem-
perature fields and heat transfer. Fig. 9 presents (a) flow
and temperature fields for tall enclosures with A = 1, 2
and 4 in (i) to (iii) respectively, at Ra = 106, and (b) for shal-
low enclosures with A = 1, 0.5 and 0.2 in (i) to (iii) respec-
tively, at Ra = 105. Striking difference with respect to case
A is that the strength of the circulation is much weaker
and the thermal penetration is reduced considerably. For
square and tall enclosures in Fig. 9(a), jWextj is 8.2913
(X = 0.1625, Y = 0.8375) for A = 1, 6.4780 (X = 0.1625,
Y = 0.8250) for A = 2 and 3.6401 (X = 0.1125, Y =
0.7750) for A = 4 all at Ra = 106. The location of jWextj is
very close to the active side wall for all aspect ratios. Of
course, as the enclosure is taller, the coordinate of jWextj is
closer to the active side wall. For square and shallow enclo-
sures in Fig. 9(b), the situation is similar with amplifications:
jWextj is 4.0202 (X = 0.2125, Y = 0.7750) for A = 1, 4.8159
(X = 0.2500, Y = 0.7500) for A = 0.5 and 4.9751 (X =
0.2500, Y = 0.7500) for A = 0.2, which shows that the
strength of circulation is almost constant and the coordinate
of jWextj is almost at the same with decreasing aspect ratio.
This shows that thermal penetration is more difficult in case
B than case A. In fact, the isotherms show that for the cases
in both figures, the temperature gradients are not apprecia-
ble after certain distance, which implies that heat transfer
between the sections is negligibly small.

4.2.2. Thermal penetration

They are calculated using the same technique as in case
A, i.e. the identification of the point where the temperature
gradient becomes negligibly small. The results as percent-
age thermal penetration as a function of Rayleigh number
for various aspect ratios are presented in the lower part of
Fig. 7. Similar to the results of case A, percentage thermal
penetration is an increasing function of the aspect ratio and
Rayleigh number and there exists an optimum aspect ratio
at A = 2. The striking difference from case A is that per-
centage thermal penetration is generally smaller and
approaches to about 70% at Ra = 106. It appears also that
at Rayleigh number greater than 106 this trend may con-
tinue and the percentage penetration may even become
smaller, although this point has not been ascertained in this
study.

4.2.3. Heat transfer

Normalized average Nusselt number on the hot or cold
wall is calculated by Eq. (6) and presented in the lower figure
of Fig. 8 for case B. Heat transfer is conduction dominated
at low Rayleigh numbers up to about 105 for tall enclosures
and up to 104 for all. As the aspect ratio decreases towards
A = 1, the convection becomes gradually dominant. For
shallow enclosures, as the aspect ratio decreases further,
heat transfer increases with increasing Ra number. Follow-
ing our observation regarding Fig. 9(b), the convection is
suppressed considerably for this case. As expected, in con-
vection dominated regime, heat transfer is enhanced with
increasing Rayleigh number and decreasing aspect ratio.

Local Nusselt number profiles on the active wall for
A = 0.50 and 0.20 are shown in Fig. 10 and those for
A = 2 and 4 in Fig. 11. In these figures, the profiles are
traced for Y from 0 to 1. As discussed earlier, we can see
clearly that the local Nusselt number profiles along Y are
symmetric with respect to the symmetry plane dividing
hot and cold parts of the enclosure at Y = 0.5. Fig. 10
shows that the mechanism discussed regarding Fig. 5 for
case A is also applicable in this case. In comparing Figs.
5 and 10, for example, we notice that although there is heat
transfer from the enclosure to the environment near the
horizontal walls, it is not the case at the symmetry plane
at Y = 0.5, where Fig. 10 shows that local Nusselt number
becomes zero at all Ra numbers. Heat is transfered from
enclosure to environment near at Y = 1 level, because the
fluid is warmer than the wall. At the symmetry plane level,
heat is transfered completely from the upper half to the
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Fig. 10. Local Nusselt number at (X = 0, Y) along the heated and cooled
sections (case B) for A = 0.50 (the upper figure) and A = 0.20 (the lower
figure) for various Rayleigh numbers.

Fig. 11. Local Nusselt number at (X = 0, Y) along the heated and cooled
sections (case B) for A = 2 (the upper figure) and A = 4 (the lower figure)
for various Rayleigh numbers.
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lower and there is no heat transfer to the environment. It is
also noticed for A = 0.5 in both figures that the strength of
Nuloc for case B is reduced considerably with respect to case
A. In tall enclosure case in Fig. 11, similar observations are
made. In this case, the strength of heat transfer near hori-
zontal boundaries is increased and following Fig. 9(a), the
formation of the secondary counter rotating cell is discern-
ible at Ra = 106 and its effect on Nuloc profile.

5. Conclusions

A numerical study has been carried out in rectangular
enclosures, which have a vertical active wall and all other
walls are insulated. The equally divided active sidewall is
heated and cooled with sinusoidal temperature profiles.
Two cases have been considered: the first is the lower half
is heated while the upper half is cooled and the second, the
upper half is heated and lower half is cooled. The influence
of Rayleigh number, of the aspect ratio, the position of the
heated part on the heat transfer characteristics is examined.
In view of the results and discussion presented, the follow-
ing main conclusions have been drawn.

� The flow and temperature fields are symmetric with
respect to the horizontal plane equally dividing lower
heated (cooled) and upper cooled (heated) sections.
� The local Nusselt number at the active wall is governed

by the sinusoidal temperature profile. For low wall
temperatures, depending on the sign of the temperature
gradient in the horizontal direction, the local Nusselt
number may become negative (positive) at the heated
(cooled) section, i.e. the heat transfer from the enclo-
sure to the environment (from the environment to the
enclosure).
� The normalized Nusselt number or heat transfer is dom-

inated by conduction at low Rayleigh numbers and by
convection at high Rayleigh numbers. The influence of
the smaller aspect ratio is to increase the heat transfer.
� When the heated section is in the lower half of the enclo-

sure, the heat transfer is higher, especially at high Ray-
leigh numbers, than that in which the heated section is at
the upper half of the enclosure.
� The thermal penetration is a function of the aspect ratio

and Rayleigh number. Generally, it approaches to 100%
at high Rayleigh numbers when the lower half heated
and the upper half cooled (case A) while about 70% when
the upper half is heated and the lower half is cooled (case
B). In addition, in the latter case it appears that the ther-
mal penetration goes through maxima at lower than
Ra = 106, perhaps indicating that at still higher Rayleigh
numbers, if this trend continues, the percentage thermal
penetration may become even smaller.
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